# 2-way Control Valve type H2FR

Cast Steel, PN 40, DN 20 - 80 mm, 2 Seats, Reverse acting

# 0-2.4.09-I

# Page 1 of 2



#### **TECHNICAL DATA**

| Materials:                |                                        |  |  |  |  |
|---------------------------|----------------------------------------|--|--|--|--|
| - Valve body              | Cast steel                             |  |  |  |  |
|                           | GP240GH                                |  |  |  |  |
|                           | (GS-C25)                               |  |  |  |  |
| - Trim                    | Stainless stee                         |  |  |  |  |
| - Nuts, bolts             | 24 CrMo 4/A4                           |  |  |  |  |
| - Gasket Grap             | Graphite with stainless steel foil and |  |  |  |  |
|                           | copper                                 |  |  |  |  |
| Nominal pressure          | PN 40                                  |  |  |  |  |
| Seating                   | Double seated                          |  |  |  |  |
| Flow characteristic       | : Quadratic                            |  |  |  |  |
| Leakage rate              | ≤ 0.5% of Kvs                          |  |  |  |  |
| <b>Regulating capabil</b> | ity Kvs/Kvr > 25                       |  |  |  |  |
|                           |                                        |  |  |  |  |
| Function                  | Opens by pressing the spindle          |  |  |  |  |
| Flanges drilled           |                                        |  |  |  |  |
| according to              | EN 1092-1 PN 40                        |  |  |  |  |

DIN 2635/BS 4504

Counter flanges DIN 26 Reverse acting (normally closed) For cooling systems or similar

For cooling systems or similar Adjustable seat interspace

#### Subject to change without notice.

www.cloriuscontrols.com

## APPLICATIONS

Valves type H2FR are mainly intended for control of cooling systems. The valves are used in conjunction with temperature or pressure differential regulators for controlling industrial processes or cooling systems. As the reverse acting valves are held in closed position by means of a built-in spring, the max. differential pressure,  $\Delta p_L$ , against which a valve can close depends on the spring. When opening the valve, the actuator has to overcome the spring force. The table on the next page shows max. allowable values of  $\Delta p_L$  as well as the max. allowable inlet pressures for opening the valves,  $p_{max'}$  for various actuator forces.

#### DESIGN

The valve components – spindle, seat and cone - are made of stainless steel. The valve body is made of cast steel GP240GH (GS-C25) with flanges drilled according to EN 1092-1. The thread for the actuator connection is G1B ISO 228. The valves are double-seated. The leakage rate is less than 0.5% of the full flow (according to VDI/VDE 2174).

## FUNCTION REVERSE ACTING

Without an actuator being connected, the valve is held in closed position by means of a spring. With pressure on the spindle the valve opens. In connection with our actuators, the valves act as "cooling" valves, i.e. they open at rising temperatures. The quadratic characteristic will not cease until the flow has dropped below 4% of the full flow.

#### **FEATURES**

- Simple design secures reliable controls.
- Location of the pack box in the actuator makes the valve service friendly
- Reliable and secure due to internal parts of stainless steel

#### PRESSURE/TEMPERATURE DIAGRAM

According to DIN 2401





# MOUNTING

The valve can be installed with vertical as well as horizontal spindles. For valve temperatures of max. 170 °C, the thermostat/ actuator can be fitted below or above the valve. For valve mounted with thermostats in media temperatures above 170 °C, a cooling unit has to be applied with connection downwards (please refer to data sheet for thermostat accessories). For electric actuators a high temperature adaptor must be used (please refer to data sheets for the electric actuators).

## **DIMENSION SKETCH**



| Туре    | L<br>mm | <b>H1</b><br>mm | <b>H2</b><br>mm | <b>D</b> (dia.)<br>mm | <b>b</b><br>mm | <b>k</b> (dia.)<br>mm | <b>d</b> mm dia.<br>(number) |
|---------|---------|-----------------|-----------------|-----------------------|----------------|-----------------------|------------------------------|
| 20 H2FR | 150     | 63              | 112             | 105                   | 18             | 75                    | 14x(4)                       |
| 25 H2FR | 160     | 70              | 117             | 115                   | 18             | 85                    | 14x(4)                       |
| 32 H2FR | 180     | 75              | 151             | 140                   | 18             | 100                   | 18x(4)                       |
| 40 H2FR | 200     | 85              | 155             | 150                   | 18             | 110                   | 18x(4)                       |
| 50 H2FR | 230     | 95              | 169             | 165                   | 20             | 125                   | 18x(4)                       |
| 65 H2FR | 290     | 110             | 180             | 185                   | 22             | 145                   | 18x(8)                       |
| 80 H2FR | 310     | 155             | 195             | 200                   | 24             | 160                   | 18x(8)                       |

## **SPECIFICATIONS**

| Туре    | Flange<br>connection<br>Dn in mm | <b>Opening</b><br>mm | <b>k<sub>vs</sub>-value</b><br>m³/h | Lifting height<br>mm | <mark>Max. Δp</mark><br>bar | Actuat. force<br>N | <b>Corresp. p<sub>1max</sub></b><br>bar | <b>Weight</b><br>kg |
|---------|----------------------------------|----------------------|-------------------------------------|----------------------|-----------------------------|--------------------|-----------------------------------------|---------------------|
| 20 H2FR | 20                               | 20                   | 5                                   | 6.5                  | 8.3                         | 200<br>400         | 9.4<br>25                               | 5                   |
| 25 H2FR | 25                               | 25                   | 7.5                                 | 7                    | 8                           | 200<br>400         | 8.8<br>25                               | 6.5                 |
| 32 H2FR | 32                               | 32                   | 12.5                                | 8                    | 7                           | 400                | 16                                      | 9                   |
| 40 H2FR | 40                               | 40                   | 20                                  | 9                    | 6.6                         | 400                | 16                                      | 11                  |
| 50 H2FR | 50                               | 50                   | 30                                  | 10                   | 5.8                         | 400                | 15                                      | 16                  |
| 65 H2FR | 65                               | 65                   | 50                                  | 11                   | 10                          | 400<br>800         | 10<br>40                                | 21                  |
| 80 H2FR | 80                               | 80                   | 80                                  | 13                   | 6.7                         | 400<br>800         | 10<br>40                                | 38                  |

97